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AISTRACT

This Research Contribution describes a
methodology for assessing enemy ability
to trail friendly ships at sea. It con-
sists of four parts. The first part
treats the search for a lost quarry by
shipborne helicopter or long-range re-
connaissance aircraft. The second des-
cribes a Markov model yielding the frac-
tion of tim the ship is free of tr.iil.
The third part estimates enemy aircraft
requirements to achieve specific search
results. The last part presents and
documents an AFL program, TRAIL, that
perform all required calculations.
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TRAIL: A SHIP-TRAILING MODEL

This Research Contribution describes a methodology to assess enemy

ability to trail friendly ships at sea. It consists of four parts. The
first part treats aircraft or helicopter search for a lost contact. The
second describes a Markov model yielding the fraction of time the ship
is free of trail. The third part estimates enemy aircraft requirements
to achieve specific search results. The last part presents and
documents an APL program, TRAIL, that performs all required
calculations.

SEARCH BY AIRBORNE RECONNAISSANCE PLATFORMS

The trailing scenario is as follows. Each friendly ship has an
enemy ship assigned to trail it wherever it goes. When trail is broken,
a helicopter flies from the trailing ship to search for the target. If
the search fails, long-range radar reconnaissance aircraft are summoned
from distant bases.

The General Case

Suppose the friendly ship breaks trail at time t - 0. We assume
here that the air search is random with a uniform target distribution
(that is, the target may be found anywhere in its area of uncertainty
with equal probability). Let:

S(t) cumulative area searched up to time t

A(t) target's area of uncertainty at time t

P(t) Sprobability of finding target before time t.

Then we have the Koopman formula:

P(T) - I - K exp f (t) dt (1)
0 A(t)

where K is determined by the initial condition. This formula is
proved as follows. Let Q(t) S I - P(t). The probability Q(t + At)

of not finding the target between times t and t + At - [the
probability Q(t) of not finding it within time ti x [1 - the

probability u of finding it between times t and t + At). We have

u - [S(t + At) - S(t)J/A(t) because of the uniform target

distribution. These results lead to the differential equation
Q'/Q - -S'/A, whose solution is: Q is proportional to
exp (-fS'dt/A). The stated result follows.

. . .. . .. ... ... ,- - - . . . .. _ ... _ . . . . . . .. . , _



In particular, let

To S time when search begins.

Then S(t) is of the form:

S(t) = Y(t - T0 )S0 (t) , (2)

where Y(x) is the step function, equal to I for x > 0 and equal to 0
otherwise. The initial condition is:

P(To) - min[I,So(To)/A(To) . (3)

1he derivative of Y(x) is the delta function 6(x), such that
J O(x - c)f(x)dx = f(c) if c is in the interval (a,b) and 0otherwise. Applying this result to equation I, we obtain:

P(T) Y(T - TO) Po(T) , (4)

where:

P0(T) 1 - I - min [IA 7 exp f AtT dt]. (5)

A Secial Case

Let:

v target speed after it breaks trail

v' searcher's speed

r E searcher's radar detection range.

Assuming that the target's course is random, the target can be
found after time t anywhere inside a circle of radius vt. Thus:

At) -wv 2t2  . (6)

-2-



The searcher sweeps out equal areas in equal times, beginning at TO, and
so:

S(t) - 2rv'(t - To)Y(t - TO ) . (7)

According to equation 5, we have:

Po(T) - 1 - clexp(c 2/T) , (8)

2rv'

with c2 - and c1  exp(-c2/T o ) (9)
nv

2o2

Note that r, v, and v' enter only through the combination rv'/v 2.

Thus, variations in r, v, and v' that leave rv'/v 2 unchanged do

not affect the search results.

A plot of the detection probability P(T) versus T is found in
figure 1. As can be seen, P(T) increases very rapidly with T when
the search begins at time To . Because the area of uncertainty grows

C

C

0 T

Time T since trail broken

FIG. 1: BEHAVIOR OF AIR SEARCH PROBABILITY
DISTRIBUTION P(T)

-3-
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faster than the searcher's search rate (quadratically versus linearly),

the target is not certain to be found. Indeed, letting T tend to
in equation 8 shows that the probability of ever finding the target is:

Pmax = c, (10)

which is smaller than 1.

For helicopter searches immediately following loss of trail, we
assume that the ship's area of uncertainty expands at a rate v 2 away
from the trailer and at a lower rate v I towards the trailer (see
figure 2). The difference is due to the fact that the ship is less

likely to go in the general direction of the trailer. Assuming the

higher noise produced by the accelerating ship does nt reduce its area
of unce5 tainty, we see that we must simply replace v with

(v1 + v2 )/2. in equation 9. If the helicopter stops at time Tmax  from
trail-break, and there are nOP P  independent opportunities per day to V
break trail, and circumstances propitious for trail-breaking occur
independently every day with probability w, then the daily probability

of breaking trail is:

P = w - Po(Tmax)P . (OP)

\ Ship's position when

X Last known trailer
position

FIG. 2: SHIP'S AREA OF UNCERTAINTY AT TIME t
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The probability w can be tied to weather conditions, such as sea

state or visibility, or to availability of escorts, or to other factors.

Expected Time Target Is Found

Because the target is not certain to be found, the expected time
the target is found is infinite. Nevertheless, one can define a
conditional expectation time:

E(T') B expected time target is found given it is found before T'.

It is given by the expected time the target is found up to time T'
divided by the probability P(T') of finding it before T', that is:

Y(T' - T ) T'
E(T') Pf TP'(T)dT. (12)

The result is:

()c2 n c2 e c2/%

cIexp(c2/T')I T ("-) e

- c2  c2 /T' (13)

where:

f(c) e -c  I + S cn  • (14)
n=l n

The value of f(c) must be calculated numerically. It is plotted and
tabulated in figure 3. All we need is the sumration term, but we
introduce f(c) because it varies much more gently with c than the
summation term. The latter converges rapidly, especially when c is
smaller than about 4. A word of caution: the function f(c) is
sometimes needed to a high degree of accuracy (several decimal places),
so that figure 3 will not always suffice. (Example: when exp (c2/To)
is very large.) A TI-59 calculator program to compute f(c) is
provided in table 1. Published tables can also be used (see below).

This result is derived as follows. The derivative P' of P is:

P'(T) - 6(T - T0) Po(T) + Y(T - T) Po(T) , (15)

-5-
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1.0/oo,

f(c) e- c  0 c o.1 .997
n = I0.2 .9910

0.3 .9809
0.4 .96780.9 0.5 .9523
0.6 .9349
0.7 .9159

C f(c) 0.8 .8957
- - 0.9 .8745

0.8 6 .210 1.0 .8527
7 .173 1.1 .8305

10 .113 1.2 .8080
15 .072 1.3 .7854
20 .053 1.4 .7629

0.7 100 .010 1.5 .7405
1.6 .7184
1.7 .6966
1.8 .6752
1.9 .6543
2.0 .6339

0.6 2.1 .6140
2.2 .5947
2.3 .5759
2.4 .5577
2.5 .5401

0.5 2.6 .5231
2.7 .5067
2.8 .4909
2.9 .4756
3.0 .4609
3.1 .4468

0.4 - 3.2 .4332
3.3 .4201
3.4 .4075
3.5 .3955
3.6 .3839

0.3 - 3.7 .37273.8 .36203.9 .3518

4.0 .3419
4.1 .3325
4.2 .3234

0.2 4.3 .31474.4 .3063
4.5 .2963

4.6 .2906
4.7 .28320.1I 4.8 .2761

4.9 .2693
5.0 .2628

Si I i

0 1 2 3 4 5

c

FIG. 3: THE FUNCTION f(c)
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TABLE I

TI-59 PROGRAM TO CALCULATE f(c)

Definition: f(c) B e-c  + cn

Listing:

041 0 8 08

000 42 STO 021 t5 1) 42 66 PAU
01 i0 i. 0'' 5 3 0.43 43 RCL

002 01 1U0 2 ',n 43 F.L 044 0'.. 06 :,
003 42 -TO 024 i0 10 045 5 +
0011 t 6 1,:4 ". C, 2 5 45 046 0 1 1

0O5 42 STE U-", 43 RL C.147 95 =
006C e 07 i:17 I0"27 0' E. 0t En 04 ,8 4 2 S T0

00? 4 -: F L 024 9 , 4 04 06 0 .008 10 1 2 -- - 0',0 r 10 z E

009 94 + .... 030 43 RCL 051 61 GT0
t1 .-' INO 031 1S. 06 0 5 2 17 IFF

011 ,3 LN 5::: 0"5: 76 L EL
012 42 STO 03 43 FCL 054 10 E,

013 08- 0"E: 034 07 0 7 055 :3 PGI
014 76 LBL 035 95 = 056 it, 16
015 :7 IFF 036 85 + 057 11 A
016 43 R'CL 037 43 RFC:L 058 ,' FG M
017 10 10 038 08 08 059 16 16
0 18 94 0 C39 95 = 060 1 C
01'9 22 I., 040 42 STO 061 42 STO
02': 23 LN ttt,-., I... 07

0 2tX, 96 RTN

To use: Key in c, and then press R/S. isplay will flash the partial
sums for visual inspection of convergence. Stop execution (RIS) when
result does not seem to grow bigger. The result is In register 8; the
number of term added in register 6. Program 16 of the mater library
issued to calculate ni. Registers I through 10 and labels A through E,
E', and ' are used. The constant c is in register 10, and ni is in
register 7. Te larger c is, the longer it takes to get the result.

-7-



with P. in equation 8. This gives (for T' > To):

Po(To) 1

E(T')- T o00 + f TP'(T) dT. (16)
0

This is a general result for all P(T) of the form of equation 4. When
T'+ TO, it can be shown that E(T') + To, as expected. It can also be
shown that ET') is between To and T', as expected. In this
special case, the first term is 0 because P0(To ) - 0 (from equation
8). Expanding the exponential in the integrand term by term gives:

Tv n / TT-I

T' T' c2 -n- \
Te(T) dT - C , (n d (17)

To 0 I T 0

and the stated result follows. The sum can be related to the
exponential-integral function Ei(x) by [I, p. 229, 5.1.10]:

Sn
I-~- -Ei(c) -Y -Inc , (18)
nnl

where y = .5772 is Catalan's constant and Ei(c) is tabulated [1, pp. 238
ff].

When P(-) is close to I (that is, when the searcher is
practically certain to find its target) it is tempting to let T' tend
to - in equation 13 to get the expected time the target is found.
Unfortunately, E(T') diverges because of the In (T') term. However,
it is a mild divergence, so that letting T' be a large but reasonable
constant gives the desired expected time, and the latter does not
increase mach with large increases in T'.

Resumption of trail

Once the aircraft finds the ship, only half the work is done. The
trailing ship must now resume trail. What was the trailer doing after
trail was broken? Because, in the long run, any course the trailer
takes is equally likely to be toward the final target position (at the
time the aircraft finds it) as away from it, we assume the trailer
roughly maintains its initial position 0 (see figure 4). At the
time T the ship is found, the area of uncertainty has grown to a
circle (C) of radius vT centered at 0. The ship is found, on
average, at a point a distance Ro  from 0 such that the circle
(CO) of radius Ro contains half the area of uncertainty. This gives:

R. -vT/VT. (19)

-8-



Ship area of
uncertainty
(C)

Point wvhere aircraftas~it finds ship

Point where trail fnsWiwsbroken t

FIG. 4: TYPICAL GEOMETRY WHEN AIRCRAFT FINDS SHIP

Once the aircraft communicates the ship's position to the trailer,
the trailer moves toward the ship. But the ship moves too. In the long
interval after trail is broken, the ship might receive intelligence
information on the trailer's movements, or at least an estimate of the
trailer's position when the aircraft detected the ship, and it could

move away from that position. If so, it may be a long time before the
ship is back under trail, if it ever is. Assume a ship-quarry closure
rate of VT. Then, if the aircraft detects the ship at time T, the

ship is back under trail at time kT, where:

k E I + vT/-- (20)
vT

Hore than one aircraft may be needed for any one mission, with each
aircraft relaying its findings to its relief. Note that the time
between T and kT, when the aircraft is holding the ship and waiting
for the trailer to arrive, can in some sense be considered a time under
trail for purposes of possible attack by platforms other than the
trailing ship. In our context, however, "trail" refers only to direct
trail by a specific trailing ship unassisted by outside assets.

-9-



Expected Kate of Trail Reacquisition

Our model assumes a constant probability per unit time that a
trailer will reacquire its target ship after trail is broken. Thus,
if s is the probability of trail being resumed n, days after it is
lost, then the daily trail-reacquisition probability P' is such that:

1- (1- P') =s , (21)

the days being assumed independent. Solving the equation for P'
when s is known, we get:

p, 1 - 0 - s) 1 (22)

Here, the ship is first reacquired by an aircraft at time T,
distributed according to equation 4. After the aircraft has found the
ship, it stays with It until the trailer can arrive and resume trail,
which, as described above, takes a period of time proportional to T.
Thus, let:

k E constant such that trail is resumed at time kT if
aircraft finds ship at time T.

so = ratio of desired unit of time for reacquisition rate P'
to unit of time in distribution P(T) (here, s0 - 24
since we want a rate per day and T is in hours).

q =- so/k

What we want is the expectation value P' of:

1 - [1 - P(T)jq/T (23)

relative to the distribution P(T) in equation 4. For the reasons
explained earlier, we assumed that the search will be called off at a
certain elapsed time T . This time is designed to ensure that the ship
will be found with a given probability p, smaller than 1 - cl. T is
therefore given by inverting equation 8:

c 2

in =. (2 4 )
In (- )

c I

............ ........ 
. I lll0l



We have:

PI - P (T)][T -P'(T) dT (25)

Using equation 15, we have:

I [I " qIT0 P0(TO)

00

00- - [ _ Po(T)]pq/T P, (T) dT , (26)
o L

0

which is valid for all Po. Specializing to the distribution in
equation 8, we get: o

1 q/ To exp(c 2 q ) [I-cexp(c 2 1To)] Px(2)
_p~ (c) c/T 1 exp~c 2 q/T2)] cLC2 T-2 exp~c2 /T~dT . (27)

Specializing further using equation 9, which indicates that Po(To) - 0,

we have, with the change of variable x - L/T,[

P1 -I / dx exp c + -2 - In c) x] (28)

This integral must be calculated numerically (see table 2 for an APL
program). Note that, unlike the expected time to find the target we
calculated earlier, P' does tend to a limit when T + .

FRACTION OF TIME FREE OF TRAIL

The primary measure of effectiveness in avoiding trail is the
fraction of time at sea the ship is free of trail.

Result

We now describe the Markov model that leads to the following
result:

E fraction of time at sea the ship is free of trail

p (PI' Po -Po p ) (I-P - P') [I - (I -P p,)n]
- + + 2, (29)M T-T P, n(P + P')2(9

-11-



TABLE 2

NUMERICAL INTEGRATIONa

Listing:

YINTWGRALE037

9 ZNTt-AD INTEGRAL EPS;H;W;KFL

C13 W.1,O5X(CK4O),+/INTEGRAND AD)xH+.-/@Ag

E23 F~:w.w, (NE(fw)-K-13+2)+Hx+/ZNTEGRAND(I+A*)+CHJ-H+2)Xi1+2X

%2*1I+KtK+,L4-0
C33 G:w4.wpzHT4+ C(4*L)xWCWJ3)-WL(tw)-K3)+-14*L'L+I

E43 40XIL(K
C53 4FXXEPScI-/WC(?W4.C-1+2xK)fW)-0uIC2

V

b
How To Run: To calculate f f(x) dx, define the function f(x)

a
in APL (calling it INTEGRAND), input the two-vector AB
1fa,b) and the desired precision EPS, and then key in AB
INTEGRAL EPS. Vector origin must be 1 (a 10 + 1).

Example: a - 0, b - 1/8.4, 5PS- 06
f(x) - exp [239.5x + (38.2 + 6.27 In c1) x]

VI NT E OR ANDf l )
Y i-ZflTEGRANr N'

113 Y4A (239,5xxx2)+XX38.2+6.2 71 .ci

C1E..0l06
(0,+48.4) INI:GRAL IE-6

1 *6409036

a Using Romberg's rule. Program is from CNAts APL Library.

-12-



where:

P0  probability the ship is trailed when it leaves port

P E probability the ship will shake free on a day when
it starts out trailed (assumed constant)

P' = probability the ship is reacquired by its assigned
trailer on a day when it starts out free (assumed
constant)

n = number of days the trip lasts.

The first term frequently dominates. A required correction to E
will be discussed shortly.

Assumptions

The time unit is arbitrary. We chose to use the day. This means
that in a given day, the ship is assumed to be either trailed all the
time or free all the time. In other words, we assume that the process
of breaking trail or reacquiring trail occurs instantaneously at the
beginning of a day. This simplifying artifice does not affect the
result. If the unit of time is chosen to be, say, the hour, then the
"rates"* P and P' must be divided by 24** and the time interval n
multiplied by 24. It can be verified that the resulting E remains
virtually unchanged.

Note that the daily break-trail probability P refers to losing trail
for a large fraction of a day. Broken trails that are quickly
reacquired, say by helicopters operating from trailing ships, are not
counted. Equation 11 gives a possible estimate of P.

Strictly speaking, P and P' are transition probabilities, not

rates-a subtle but important difference in statisticQl calculations.
If P were a rate, there would be a probability e -rPn/n! of n
transitions per day; in fact, there pan be only one transition per day,
and its probability is P, not Pe . However, since the probability
of a transition in n days is 1 _ (1 - p)n, and since this expression
can be rewritten 1 - exp (- i) if one wishes to consider it a Poisson
process, one can identify -ln(l - P) with the "rate" X. For small
P, XP.(
** Or replaced by P - - (1 - ?)1/24, assuming independence from hour
to hour.
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It is also assumed that each day is independent of the previous day for
breaking and reacquiring trail.

Range of Validity of Model

Obviously, the closer the exact probability of reacquiring (or
breaking) trail over A days resembles f(A) - I - (1 - p) , where p
is a constant, the better the model. Note that the probability of
reacquisition is 0 for some time and then surges to high values in a
short period of time, unlike the even behavior of f(A)* (see figure
5). Nevertheless, the model is still valid, provided both the total
trip duration n and the mean time between trail-breaking events are
larger than the time A0 when the two distributions do not differ
significantly in value. If these conditions are not met--say if trail
is frequently broken--then the frequent initial periods of no-trail will
add up significantly, and the model will underestimate the fraction of
time the ship is free of trail.

1.C'

Exact

.0
CL Approximate

V/
/

/

0 kT,,

Time trail is resumed after it is broken

FIG. 5: ILLUSTRATION OF APPROXIMATION

IN THE TRAIL MODEL

*The exact probability of trail resumption within A days after trail
is broken is 0 if AWo/So and Po(soA/k) otherwise, with Po as in
equation 8.
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The Markov Chain

Since the days are assumed independent, we have a Markov process,
illustrated in figure 6. It has two states: free (F) and trailed (T).
The state vector is S = (PF TP where PA is the probability of being
in state A. The initial state S is:

0

FETC

- -1 - -, -F - - -'n - - -r - - Shp leve (3r)

The ~ ~ ~ ~ P trniinmtiP steeoe

I -P(i I (32)ay

F T
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The state vector Sk  after k days is:

Sk - Sok• (33)

The kth power of the matrix M can be calculated* to be:

Mk I (P + P'W P'w- P(W3H p + PP (34)

where:

W (I - P - pI)k . (35)

*To find the nth power of a 2x2 matrix A, assume An mlA + m2 1,

where I is the identity matrix. If X, and X 2 are the eigenvalues

and X an eigenvector of A, we have AX - AX and AX - AnX, which

gives An - m1A + m2 for A = X, or A X 2 , and yields mI and m2
in terms of X, and A 2 . The result is:

ml - C and m2 = -1 A 2 CnI

which gives:

aCn cn dC -AlA 2 C-I

where:

1 2
A Cn A -A 2

The eigenvalues are obtained by writing that the determinant of A- AI
is 0. This yields X - p + q and X2 = p - q, where:

a+d q[(d a) 2 + 4bc 112

In our case, A- I and A2  I - P - P'.
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The probability Qk that the ship is free on the kth day is the first

element of Sk, namely:

Qk = (P + P')- I [P + W(P' - PoP' - PoP)] . (36)

The expected number of days free of Lrail is simply the sum of the
probabilities of being free for each of the days at sea. Dividing by
n gives the untrailed fraction E:

E ! k(37)
k-I

which leads directly to the stated result after use of the geometrical
progression:

n k I -
-X " (38)

k-O

Special Cases

When P' 0 0, which is generally the case when the trailer is left
to its own devices, the fraction E of time free of trail simplifies to
E = Eo' where:

Eo 0- (1 -P) 1 -(-p)n .,(39)
0' (PII -r

* This special case can be simply derived as follows. The probability
of shaking the trailer off on the kth day is po(l-p)k-lp. This action
results in n - k + I days free of trail. Thus:

n k-I
nE - n(l - Po) +, (n - k + 1)Po(I - P) P.

k-1

Using the geometrical progression result of equation 38 and the fact
that

dx -j x =x(l X x)l- 2 [1 xn x)nx(1= x) [ - n(1 ~x

k-0 k-O

we get the stated result.
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When n + - (long trips), we have:

E + IP+ (40) 4

When P = P' (the ship breaks trail as easily as the trailer
reacquires) and P - 1/2 (the ship is trailed during port exits as often
as not), the ship Is trailed exactly half the time. The same result
obtains if P - P' =1/2, or if P P' and n-, or if P-P' =P 0 = 1
and n is even.

Behavior of

From equation 36 we infer that Qk, the probability of being free I
on day k, decreases with k if P' -POP' - POP is positive and

increases with k if that quantity is negative, provided P + P' is

smaller than 1. The asymptotic limit (steady-state value) of for

large k is P/(P + P'). If P + P' is larger than 1, Qk oscillates

up and down around the limit, but the oscillations damp out with time.
If P + P' - 1, Qk is always equal to the limit.

Examples

The behavior of Qk is illustrated in figure 7 for P - P',
P - .2, and n - 90. As can be seen, the closer P + P' is to ,

the faster the process reaches its steady state. The latter is reached
rather fast anyway: by the tenth day, Ok differs from the steady-
state value by less than 10 percent.

.8 P P"=. 4

X ..6

>~ .5

0 .

0 .3 =.5

.2 F- p p, .9

Po = .2

L 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 90

Days since ship left port (k)

FIG. 7: DAILY PROBABILITY Ok SHIP IS FREE OF TRAIL
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Figure 8 shows how the fraction of time free of trail, E, varies
with P, P', and P0 . For simplicity and so as not to introduce bias,
we choose P - P'--the ship breaks trail as easily as the trailer
reacquires it. The trip lasts n - 90 days. The dependence on P
predictable in nature but surprising in magnitude, is as follows:*

* If P is relatively large (over 5 percent a day)--
frequent trail loss and reacquisition--the result is
virtually independent of P0  For example, for P - 5
percent, if the ship is picked up in port (P0 W 1), it is
free of trail 45 percent of the time; if the ship is not
picked up in port, it is free of trail 55 percent of the
time.

" If P is relatively small (less than 5 percent a day)--
rare trail loss and reacquisition--the result depends
strongly on P0 . For example, for P 1 I percent, if the
ship is picked up in port (P0 M 1), it is free of trail 27
percent of the time; if the ship is not picked up in port,
it is free of trail 73 percent of the time.

Corrected Fraction of Time Free of Trail

If the aircraft search succeeds only with probability p, then equation
28 gives the corresponding P' and equation 29 the corresponding E.

Since the ship is not reacquired with probability 1, and since only 98
percent of the trail-breaking events are prosecuted, the (corrected)

expected fraction of time free of trail, E, is:

E gp x E (calculated with the P' corresponding to p,
using equation 28) (40a)

+ (1 - gp) x E (calculated with P' = 0, from

equation 39)

where g - .98.

* The curves are symmetric with respect to the line E -1/2. That is,

if1/2 changes sign when Po changes into 1- P.
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1.0

0.9 P0  Probability of being trailed

during port egress
P0  0 n =90 days at sea

0.8 -

, 0.7 - = .25

- 0.7

~0.2

0

0.5

0

0. P0.0 .200 .00

0

LL 0.3

0.2

0.1

0 0.01 0.02 0.03 0.04 0.05

Daily probability of breaking or reacquiring trail (P = P')

FIG. 8. EFFECT OF TRAILING AT PORT EGRESS
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Equation 40a, which is an approximation, is a correction to E
required by the observation that a constant daily reacquisition
probability P', however small, implies eventual reacquisition, whereas
in reality reacquisition is not certain: its probability can be no
higher than gp. Equation 40a is a slight underestimate of the fraction
of time free of trail.

ENEMY AIRCRAFT REQUIREMENTS

In this section, the number of reconnaissance aircraft the enemy
requires to achieve specific search results is calculated.

To estimate the required aircraft inventory for the reacquisition
efforts, the quantity

f (k) = probability of m trail-breaking events in the first
k days of the n-day trip

is needed. It is not easy to calculate.* Here we only present an exact
line of approach and an approximation, and calculate the mean of the
distribution.

Exact Approach

This method, developed by James K. Tyson, consists of defining the
matrix:

1 1 P's) (41)

which reduces to the Markov matrix M in equation 32 for z - 1. By
"flagging" the P with a z, we isolate a trail-breaking event. The

coefficient of zm in any result based on Mz  is then associated
with m trail-breaking events. Let Sk = (Fk Tk) = k be the state
vector after k days. Then fm(k) is simply the coefficient of zm in

* fm(k) is not, as one might think, the binomial distribution

k pm(I _p)k-m. It depends on Po and P' as well. As an

illustration, if Po - P' " 0, the ship is never trailed, so it never
breaks trail, and fm(k) - 0 for all nonzero m and k.
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Fk + Tk (we sum the two because it does not matter whether the end state
is free or trailed), that is:

f (k) - - [ a~ (F+T I (42)MIk  "a (k + Tkj.=0"

The eigenvalues of M. are:

X v + t " and X2 = v - /U , (43)

where:

v - u -- + zP (44)

2 2P

We have:

(M)k - CkM - _ (45)

where:

k kC Xi k - i, (46)

S-I

where Fo indicates that the summation extends only to odd S. Note that
fr(k) - 0 for m>k/2. The formula checks out for small values of k,
but no simple closed form could be found.

Expected Number of Trail-Breaking Events

The mean of the unknown distribution fm(k) can be calculated
exactly using the results from the Markov approach. We have:

F(k) Eexpected number of trail-breaking events in the first k
days

-P In(l - E) + Po - (I - QO) ' (47)

with E as in equation 29 and Qk as in equation 36. The first term
generally dominates, especially for large n and small E.
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This result is derived as follows. The probability of a trail-

breaking event on day 1 is POP; on day 2 it is (I - QI)P; and on day

k it is (I - Qk_)P. (The probability of being trailed on day i is

I - Qi). Adding up these probabilities gives F(k). Using the

definition of E in equation 37, we get the stated result.

Approximation

We base this approximation on equilibrium (steady state) being
reached rapidly. According to equation 36, the probability 1 - k of
being trailed on day k rapidly approaches its steady-state value,

P9 
(48)I-Qk - P + P,

when any of the following three conditions is met:

* P = P'/(P + P') (the trip happens to (49)
begin in the steady state)

• P + P = I (the system falls in the steady (50)
state, 0 = P, almost from day 1)

0 (1 - P - pt)k = 0 for k << n (fast approach (51)
to the steady state).

If one of these conditions obtains, we can assume that the
probability s of breaking trail on any given day in the steady state,

PP ,(52)

is independent from day to day. The probability f (n) of a trail-
breaking events in the n days is therefore approxmated by a binomial

distribution:

f(n) (n) sm(l s)n-m  (53)m a

Now compare the mean of the above distribution, ns, with the exact

mean F(n) calculated earlier (equation 47). If the two are in
agreement, the approximation is probably good. Generally, agreement
will be observed if both these two conditions are met:
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* E - P/(P + P') (54)

• n >> PO ( + P/P') _ 1 . (55)

The first condition obtains for large n or if either of the condi-
tions in equations 49 and 50 is met. The second expresses the fact that
the first term should dominate in the expression of !(n) in
equation 47.

Note that the steady-state distribution of trail reacquisition
events is the same as that for trail-breaking events, as it should be.
Indeed, PP'/(P + P') can be interpreted as either Px[P'/(P + P')J or
P'x[P/(P + P')].

An APL program for calculating the cumulative binomial is given in
table 3.

Calculation of Aircraft Requirements

Given the validity of this approximation, the standard deviation
o is:

a - [ns(l - s)11/2 (56)

The cumulative distribution, or probability that k or fewer events
will occur, is approximated [2] by:

(k + 1/2 - ns) (57)

where:

(x) (2w)- 1 2exp(-t 2/2)dt (58)

is the standardized normal distribution. Thus, the probability of No
events over the mean ns is given by:

( + '(59)

For 2a confidence (N - 2), the probability is over 98 percent, since
f(2) - 97.7. 7hus, by planning for 2a events over the mean, one is
confident of being able to handle at least 97.7 percent of the events.
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TABLE 3

CUMULATIVE BINOMIAL APL PROGRAM

CodT:INCO

9 DIN

C13 S.(PXPP)+P PP
C23 W.V4l1+M4-I1
[33 SP 6;P1t' ,PP = 'OPPIS F so 1. IS

E43 IN 'IN
C53 A:W.W,YV4V+(M:H)X(SM)x(1-S)*N-M+.M+1
C62 4(M(H)PA
E73 'PROBABILITY OF K EVENTS OR LESS (K 0,l,2 1 ... ,N) '114W
C83 @MEAR NUMBER OF EVENTS: lNXS
C93 $STANDARD DEVIATION: ';(NxKsI-S)0,5

v
ut: N (number of days a), P (probability P), PP

(prombility P')

Intermediate output: the binomial probability S PP'I/(P + PI)

To execute: Key in inputs, then BIN.

Example:

P,4243
PP. 28 key inH4-90

DIN

P = 0,243 P PP =0,28 S so 0#1300956

N z 90
PROBABILITY OF K EVENTS OR LESS (K = 0PIP2P... P):

3.568103E-6 0.0000515935 0.0003712048 0.001773291
0.006333921 0.01806518 0.04291957 0.08752375
0,1567315 0.2510327 0.3652662 0.489512 0.6118379
0.7216022 0.811887 0.8802984 0.9282563 0.9594764
0.9784119 0.989143 0.9948403 0.9976804 0.9990125
0.9996015 0.9998474 0.9999445 0.9999808 0,9999937
0.999998 0.9999994 0.9999998 1 1 1 1 1 1 1 1

MEAN NUMBER OF EVENTS: 11.7086
STANDARD DEVIATZON: 3.191452
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The number of trail-breaking events per n-day trip that are observed 98
percent of the time is therefore:

f(n) + 24nsI-Is) (60)

for a single ship. For n' independent ships, the mean is multiplied

by n' and the standard deviation by /n', * so that the number is:

v W n'F(n) + 2 fnn's( - s) . (61)

It is always best to use aircraft assets to prosecute many trail-
breaking events with few sorties per event rather than few trail-
breaking events with many sorties per event, because the area of uncer-
tainty grows faster than the area searched.

A conservative estimate (to be discusted) of the number N of
reconnaissance aircraft required in inventory to guarantee (1) that over
98 percent of events will be prosecuted and (2) that trail will be
resumed after each event with probability p, is:

NR vt I/nst , (62)

where:

ns  number of sorties an aircraft makes per month

ts  m maximum time an aircraft can stay on station

tI - aircraft time on station that guarantees trail is resumed
with probability p (- kv - TO)

V - v, with ; in equation 61 (63)n

W number of trail-breaking events per month aircraft inventory
is tailored to prosecute.

When n independent random variables are summed, adding the means and

the variances gives the mean and variance of the sum.
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This number is derived as follows. Since t1  aircraft-hours are
required per event and our aircraft can only spend ts hours on sta-
tion, n - t /t sorties are needed per event, that is, vnA sorties
per month. Since each aircraft can make only n. sorties per month,
vnA/ns aircraft are needed.

If each reconnaissance aircraft requires q tankers, the total
number of aircraft required is:

NRT - (1 + q)NR . (64)

The result in equation 62 for enemy aircraft requirements is only a
rough, conservative estimate. Many more assumptions, models, tradeoff
analyses, and operational data are required for an accurate assessment
of those requirements. First, the trail-breaking events are assumed
evenly spread in time, even though they may tend to cluster. For
example, if trail tends to be broken in bad weather, then bad-weather
periods will contain many more events than good-weather periods. These
surge requirements will drive up enemy requirements. Consider the
example (arbitrary parameters) where five sorties are needed per event
for a p - .6 reacquisition probability and the enemy plans for
v - 85 trail-breaking events per month under conditions yielding a
w - .12 daily probability that circumstances will be propitious for
trail-breaking. The aircraft fly 12 sorties per month. Our results
show that the enemy needs 85 x 5/12 - 35 aircraft. But if we assume
perfect correlation between the times when circumstances propitious for
trail-breaking occur throughout the ships' area of deployment, trail-
breaking events will cluster every 1/.12 - 8.3 days. Thus, as many as
85 x 8.3/30 - 24 events could be expected to occur roughly at the same
time, which would drive enemy requirements up to 24 x 5 - 120
aircraft-over three times the number we calculated. Therefore, the
detailed distribution of trail-breaking events in time and information
on the correlation between the occurrence of circumstances propitious
for trail-breaking in different areas are needed. Second, we assumed
the enemy knows when to expect reacquisition, when in reality he does
not and must automatically send follow-up sorties to ensure that an
aircraft about to leave station is relieved. On the other hand, we used
the maximum (not average) number of sorties consistent with a given
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probability of reacquisition (p), because there is a limit to the
extent to which unused sorties can be "saved" for future use.*

Information on how frequently an aircraft can be flown in a given time
interval, however short, must be included in more refined esimates of
enemy requirements. Also, variations that might be attractive for the
enemy-such as flying more than one sortie soon after trail is broken,
while the area of uncertainty is still small-must be assessed.

As can be expected the dominant factor by far in anticipating enemy
aircraft requirements is w - the fraction of time opportunities for
trail-breaking occur.

APL PROGRAM FOR TRAIL

Description

Most of the above calculations were encoded in an APL program. The
26 input variables are listed in table 4 and the 23 output variables in
table 5. The coding is in table 6. There are four different functions:

* ARM, the overall control function (for aircraft
reconnaissance mission)

* INTEGRAL, the function that performs the integral in
equation 28

* INTEGRAND, the integrand of equation 28

" PEE, the function that calculates P from equation 11.

The program is executed by keying in all input variables and then ARM.
Should the input probability of finding the ship, p, be larger than
can possibly occur, an "invalid" message is printed. Vector origin is
1, and results are printed to four significant figures, as instructed in
line 2 of ARM. Should the input tolerance EPS used to calculate the

• The following simple example shows that there are cases when only the

maximum number of aircraft will satisfy the requirement. Assume there
is exactly one trail-breaking event per day, that the aircraft can each
fly exactly one sortie per day, and that the ship is reacquired the same
day it breaks trail, if at all. Assume further that one sortie yields a
.4 probability of reacquisition, two sorties .6, and three sorties .8.
The average number of sorties flown is then (.4 x 1) + (.2 x 2) +
(.4 x 3) - 2. The question is: how many aircraft in inventory will
guarantee that 80 percent of the trail-breaking events are reacquired
over a long period of time? The answer is three (the maximum), not two
(the average). If only two aircraft are bought, there will be no way a
third can be found when needed. Unused sorties are lost forever in this
case.
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TABLE 4

INPUT VARIABLES IN TRAIL

Symbol for
Name of variable
variable in text Definition

DR r Reconnaissance aircraft radar detection
range

DRH r Trailerborne helicopter radar detection
range

EPS Tolerance in calculation of integral in
equation 28 (example: .001 for three-
decimal-place accuracy)

FRE - requency vector (weights attached to each
of the aircraft mission radii in R,
according to the likelihood of each mission
radius. Sums to 1.)

HTX TO  Trailerborne helicopter reaction time--
from breaking of trail to initiation of
search

N n Number of days trip lasts

NS Ns  Number of sorties a reconnaissance air-

craft makes every month

NP n' Number of ships (to be trailed) at sea

at any given time

OPP nop p  Number of oportunities to break trail on a
day when circumstances (e.g., weather) are
propitious for trail-breaking

PO PO Probability ship is trailed when exiting
port

PS p Probability of finding ship by recon-
naissance aircraft, on which aircraft
inventories are based

K -Vector bearing the mission radii the air-
craft might be called on to cover
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TABLE 4 (Cont'd)

Symbol for
Name of variable
variable in text Definition

so so  Number of hours in a day (-24)

SI s Number of days in a month (-30)

SMX Tma x  Time from trail-breaking when trailer-
borne helicopter stops searching and

calls reconnaissance aircraft

TKF q Number of tankers required per recon-
naissance aircraft

TR Time from trail-breaking to reconnais-
sance aircraft taking off (TR)USMX)

TS ts  Reconnaissance aircraft time on station
for each of the mission radii in R
(vector)

V v Stip's cruise speed (long-term rate of
expansion of ship's radius of uncertainty)

VI vi  Rate of expansion of ship's radius of
uncertainty in directions towards the
trailer, shortly after breaking trail

V2 v2  Rate of expansion of ship's radius of
uncertainty in directions away from the
trailer, shortly after breaking trail
(usually, ship's maximum sustained speed)

VA Reconnaissance aircraft transit speed to
station

Vii v' Trailerborne helicopter search speed

VP v' Reconnaissance aircraft search speed

VT vT Trailer-to-ship closing speed after air-
craft has detected ship

WEA w Probability that circumstances (e.g.
weather) will be propitious for trail-
breaking on a given day.
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IN,

TABLE 5

OUTPUT VARIABLES IN TRAIL

Symbol for
Name of variable
variable in text Definition

CI cI  Quantity defined in equation 9 (vector)

C2 c2  Quantity defined in equation 9

E E Uncorrected fraction of time ship is
free of trail (equation 29) (vector)

E0 Eo  Fraction of time ship is free of trailwhen P' - 0 (no reacquisition capability)

(equation 39)

EB E Corrected fraction of time ship is free
of trail (equation 40a) (vector)

EBO Average value of EB

FBN ?(n) Expected number of trail-breaking events
during ship's n-day trip (equation 47)
(vector)

II -Value of integral in equation 28
(vector)

KK k Constant such that trail resumes at time
kT if aircraft detects ship at time T

(equation 20)

NR NR Required number of reconnaissance aircraft
(equation 62) (vector)

NRT NRT Total number of aircraft required, including

tankers (equation 64) (vector)

NRTO - Average value of NRT

NU v Number of trail-breaking events per month
that is not exceeded more than 2 percent

of the time (equation 63) (vector)
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TABLE 5 (Cont'd)

UNCLASSIFIED

Symbol for
Name of variable
variable in text Definition

P P Effective jrobability ship shakes free on a

day when it starts out trailed (equation 11)
(vector)

PH - Probability trailerborne helicopter
reacquires ship per trail-breaking
attempt (Po(Tmax) in equation 11)

PMAX P Maximum Lrobability of aircraft detect-
ing ship (given unlimited search)
(equation 10) (vector)

PP P' Effective probability ship is acquired
by its trailer on a day when it starts out
free (equation 28) (vector)

QN QD Probability ship is free on day n--the last
day of the trip (equation 36) (vector)

S s Steady-state daily probability of either
breaking or reacquiring trail (equation
52) (vector)

TO To  Time since trail-breaking when recon-
naissance aircraft arrives on station
(vector)

TI ti  Aircraft time on station per trail-breaking
event that guarantees a probability PS (p)
of finding ship (-(KK x TAU) - TO) (vector)

TAU T Aircraft search time that results in a
probability PS of finding the ship
(equation 24) (vector)

TT tt  Reconnaissance aircraft transit time to
station (vector)

ABCII,EI,F,G,
H,I,INTK,L,Q, Variables used internally
W,XXI,X2,Y
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TABLE 6

APL CODING OF TRAIL

9 ARMEDJ

C13 IXNPUT: f

C23 OPP#-3+0OfO-1,OG4.O*98

PSI;, 2;V2; V H';V;VHS=';' DRH';DR;, ;I HTR'; ;P,

OPP=O;oPP;', SMX=I;SMX;', WKA=I;WEA;' pTNP - 'TKF

C53 'PRE = ;FRE

C63 ITS = 'TS~l 6f'-'
C72 'ouTPuT';1 6f1-1
E83 'C2 = I;c2f(2xDRxvP).(v*2)xel
E92 IKK = #;KK4.1+V-LVTx2xO.5
E103 'AVG TT = *;+/FREXTT;'pTT = 'TT4.t-VA

£112 'AVG To = 1;+/FREXTO;', To = *T04.TTTR

C123 'cl at ';c14.*(O-c2)-TO
C 132 $AVG PMAX = ;,/PFREXPMAX~f', PMAX = IIPMAX.l-C1

E142 4(Ps)L/PMAX)px2
E152 'AVG TAU = ';,/FREXTAU;', TAU - 'TAU4..c2-o(l-PS).cl
E163 r+- I 1 -O
£172 X1:AD4.(+LTAu£12)v,+TOCz4.z1
C183 C11*-c1E13
£192 ZZ4.Z!,AD INTEGRAL EPS

£202 4(14?R),x1
£212 'AVG IX = ';4/FREXXI;l, It a '4.++Zx
£223 'AVG PP = 1g+/PREXPPj', PP Ow ';PPE.1-C1xc2x11+Ps
£233 PEE
E243 Eli.P+PP

C253 'AVG E = ';,/FREXEII, E a '3E4.P+gK)+(PP-POXEI)XCJ1E1
)X1-(1-El )*N)-N4XEl*2

C263 '. ;Eo4l-PoxC-P)X(1-c1-p)*N).:.xp
C273 'AVG ED = ';E30.-+/FREXED;', ED = 'Ebq-((PSXE)4.EOXJ-PS)

E283 'AVG ON = 'I+/FREXGON', 01N = I;QN4-P,(PP-POXEl)X(l-El)
*N) ,El

E293 'AVG PIN = '+/FREXP3NI', FIN = 'P1N4PX(NX1-E)+PO-l-
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TABLE 6 (Cont'd)

C303 'AVG S '$*;/FRtExsl', S = '1*54Pxpp+Ei
E313 s U au ;+/Fncxmuilp MU w 'INUI.(si+H)xCNP'XPDH)42x(I

HPXHXSX1-S)*0.5 I

C323 'AVG Ti = 'I+/wFREXTJl' Ti = 'ITi..KXTAU)-TO

C333 $AVG Nft = *;/FREXHR~l, MR a 'Nf.NUXTI4.HSXTS

E343 *AV RT = I;NRTo4./FREXNRT;,p NRT = ';NRTu.(i+TKP)XHR;

1 it''
C353 @SUMMARY* AVG NRT z ljNRTOjlp AVG 90 = ';C*03', W-0 I

l5081 60?'-'
C363 4.0
C373 X2'CASE INVALID, PS IS UNATTAINADLE,.'1 60pl-'

YRINTKOR ALE03JV
q XNT4-Ab XNTEGRAL EPS;H;WIK;L

C13 W4.1?O*5X(CX4.),,/2NTEGRAND AD)XH44-/$*

E23 Fww,(WC(,W)-K-1J.2),MX+/1ZNTEGRtAND(1$A3)+(H4.N+2)Xi,+2x
12*1,K4KKi+L.O

C33 G*,w4..wNT4(((4*L)xwCrw3)-wr(?w)-K)i.1+4*L.L,1
C43 4GXIL(K

VINTEGRANDE03V
V Y4.ZNTEGRAND X

E13 Y+a( (SOXC2 KKx)xxa2)+XXC2+(SO+KK)xecii

C13 *4(4xDRHxvH)+,lx (vi*2).Y2*2
C23 'FIH = 'PHe+-*Gx(eSMX)- :HTRt

3 'P = 'P4.WCAXi-PM*OPPj
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integral be too small, space limits may be reached, and EPS may have to
be reduced (which sometimes happens for small ship speeds v because of
the large value of the integral).tr

Several aircraft mission radii can be input at the same time, with
their relative frequencies of occurrence. The results are then pre-
sented separately per mission radius and averaged.

A word on units. The input and output lists refer to hours, days,
and months. This choice is arbitrary and can be changed. The issue
here is not preference but reasonableness of results. A ship is in the
"trail" or "no-trail" state for a whole day. If it is felt, for exam-
ple, that a 12-hour interval would be more appropriate than a day; the
input SO must be changed from 24 to 12. The same goes for the month,
which is the time interval on which aircraft inventories are based
(input Si).

Examples

A sample run of TRAIL is shown in table 7. The input quantities
are arbitrary and are not intended to reflect specific systems.

An example of the kind of results TRAIL can generate is the frac-
tion of ships at sea that are free of trail at any given time, 2, as a
function of the number of aircraft the enemy deploys. This function is
obtained by running TRAIL several times for different values of p (the
trail reacquisition probability that the enemy tailors his aircraft
inventory to achieve). In our illustrative case, the result is:

p (PS) 0 .1 .3 .5 .7 .8 .9 .95 .99
T (NRT) 0 12 18 22 26 29 36 45 106

F (EB) .84 .82 .68 .52 .35 .27 .18 .14 .11

Figure 9 is a plot of g versus nRT. When no aircraft are deployed,
the trailing ships are left to their own devices.

-35-

" AM..z



TABLE 7

SAMPLE RUN OF TRAIL

T IFP, )T

"or50, "5, VP=150? DP=250, V=-20, PS=,7, VT=3, S0=24, EPS
E-5, P0=05, H--120, NP=50, 1-15=10, Sl = 30, V1=10, V

2-:30, VH::75, DRH=40, NTR=1.2, OfP=4, SM =3, WE=0.05 T

KF = 0.9

2000 3000 4000
rR- 0.2 0.7 0.1
T -25 15 10

rtI T P" t' "V

C'2 = 59.68
5.714

n-VC; TT 4.462,TT 3.077 4.615 6.154
A.'( TO 9.462, TO = 8.077 9.615 11+15
rl - 0.0006178 0.002015 0.004744
,VG PMAX = 0.998, FMAX = 0.9994 0.998 0.9953
AVG TAU 11.72, TAU = 9.649 11.93 14.39
lVG IT = 6.674, rx = 15.29 4.862 2.122
AVG PP = 0.1623, PP 0.1946 0.1646 0.1417

PH =0.8519
P 0.02367
Avr .F= 0.1372, E = 0.1201 0.1392 0.1581
r1o0 0.8378
AVG P =- 0.3545, EB = 0.3423 0.3559 0.3694
AVG DO = 0.124, = 0.1084 0*1257 0.1431
AVC F = 2.441, F'ctI = 2.49 2.436 2.383
AvG s :, 0.02073, s = 0.0211 0.02069 0.02028
AVG Nu = 36.03, HU = 36.69 35.96 35.24
AV(. Tl 57.5, Tj -. 47.06 58.55 71.08
A V6 M 13.71, HP - 6.905 14.04 25.05
AV7U, trT = 26.05, NRT = 13.12 26.67 47.6

SUMMAP: AVG NPT = 26.05, AVG EB = 0.3545, E0 = 0.8378
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6 FIG. 9: SAMPLE RESULTS OBTAINED FROM TRAIL RUNSa

88e on a fleet of 50 target ships and 50 trailing ships at seall the time.
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